Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Document Type
Year range
1.
Kongzhi yu Juece/Control and Decision ; 38(3):699-705, 2023.
Article in Chinese | Scopus | ID: covidwho-20245134

ABSTRACT

To study the spreading trend and risk of COVID-19, according to the characteristics of COVID-19, this paper proposes a new transmission dynamic model named SLIR(susceptible-low-risk-infected-recovered), based on the classic SIR model by considering government control and personal protection measures. The equilibria, stability and bifurcation of the model are analyzed to reveal the propagation mechanism of COVID-19. In order to improve the prediction accuracy of the model, the least square method is employed to estimate the model parameters based on the real data of COVID-19 in the United States. Finally, the model is used to predict and analyze COVID-19 in the United States. The simulation results show that compared with the traditional SIR model, this model can better predict the spreading trend of COVID-19 in the United States, and the actual official data has further verified its effectiveness. The proposed model can effectively simulate the spreading of COVID-19 and help governments choose appropriate prevention and control measures. Copyright ©2023 Control and Decision.

2.
Communications in Nonlinear Science and Numerical Simulation ; 117, 2023.
Article in English | Scopus | ID: covidwho-2240266

ABSTRACT

Measles is a highly contagious respiratory disease of global public health concern. A deterministic mathematical model for the transmission dynamics of measles in a population with Crowley–Martin incidence function to account for the inhibitory effect due to susceptible and infected individuals and vaccination is formulated and analyzed using standard dynamical systems methods. The basic reproduction number is computed. By constructing a suitable Lyapunov function, the disease-free equilibrium is shown to be globally asymptotically stable. Using the Center Manifold theory, the model exhibits a forward bifurcation, which implies that the endemic equilibrium is also globally asymptotically stable. To determine the optimal choice of intervention measures to mitigate the spread of the disease, an optimal control problem is formulated (by introducing a set of three time-dependent control variables representing the first and second vaccine doses, and the palliative treatment) and analyzed using Pontryagin's Maximum Principle. To account for the scarcity of measles vaccines during a major outbreak or other causes such as the COVID-19 pandemic, a Holling type-II incidence function is introduced at the model simulation stage. The control strategies have a positive population level impact on the evolution of the disease dynamics. Graphical results reveal that when the mass-action incidence function is used, the number of individuals who received first and second vaccine dose is smaller compared to the numbers when the Crowley–Martin incidence-type function is used. Inhibitory effect of susceptibles tends to have the same effect on the population level as the Crowley–Martin incidence function, while the control profiles when inhibitory effect of the infectives is considered have similar effect as when the mass-action incidence is used, or when there is limitation in the availability of measles vaccines. Missing out the second measles vaccine dose has a negative impact on the initial disease prevalence. © 2022 Elsevier B.V.

3.
Chaos, Solitons and Fractals ; 166, 2023.
Article in English | Scopus | ID: covidwho-2238754

ABSTRACT

The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host population present a second-order phase transition. This transition occurs as a function of the infectivity parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from the perspective of dynamical systems, for a discrete-time compartmental epidemic model known as Microscopic Markov Chain Approach, whose applicability for forecasting future scenarios of epidemic spreading has been proved very useful during the COVID-19 pandemic. We show that there is an endemic state which is stable and a global attractor and that its existence is a consequence of a transcritical bifurcation. This mathematical analysis grounds the results of the model in practical applications. © 2022 Elsevier Ltd

4.
Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice ; 41(12):3282-3293, 2021.
Article in Chinese | Scopus | ID: covidwho-1639018

ABSTRACT

Based on evolutionary game and catastrophe theory, the stability of dynamic coalition of mask production is explored. This research introduces the Gaussian White noise and a Itô stochastic differential equation to develop dynamical equation. Then, probability density function is introduced to build the catastrophe model. Finally, some numerical simulations are given to explore the influence of excess return, default cost and initial cooperation probability. The results show: 1) Catastrophic change occurs suddenly when parameters cross the borderline of bifurcation aggregation;2) The catastrophic change occurs due to external disturbance when parameters are inside the bifurcation aggregation which is easy to recover;3) The excess return affects negatively, and the default cost and the initial cooperation probability affect positively on the stability of dynamic coalition. This research integrates evolutionary game and catastrophe theory and provide a new idea for dynamic coalition research;supports the establishment of mask production dynamic coalition and implementation for unconventional control measures under the COVID-19 epidemic. © 2021, Editorial Board of Journal of Systems Engineering Society of China. All right reserved.

SELECTION OF CITATIONS
SEARCH DETAIL